

ecocopter

Introduction

In today's market for vehicles there is a high demand for high efficiency, low emission vehicles and the helicopter market is no different.

ecocopter The search for a greener tomorrow

Georgia Institute of Technology

Quality Function Deployment

	eol		HOWs (Title)															
Quality Function Deployment	Customer Importan	Figure of Merit	Gross Weight	Disk Loading	Tip Speed	Rotor Radius	Solidity	# of Blades	Taper	Pitch Ranges	Rotor Inertia	Shaft Tilt	# of Engines	# of Main Rotors	Volume	SFC	PowerAvailable	Blade Twist
How Much		0.8	3200 lbs	4.5 psf	675 ft/s	14.5 ft	0.054	4	2:1		20 AI		Ţ	-	54.5 cubic ft	.3 lb/hr	375 HP	-12deg linear
Organizational Difficulty		ო	ю	2	ю	4	4	5	-	5	ო	4	5	5	ю	2	5	~
Weighted Importance		136.0	239.0	125.0	164.0	114.0	53.0	237.0	38.0	8.0	125.0	25.0	200.0	261.0	128.0	297.0	127.0	112.0
Relative Importance																		
Absolute Difficulty		45.3	79.7	62.5	65.6	28.5	13.3	118.5	38.0	4.0	41.7	6.3	40.0	52.2	42.7	148.5	63.5	112.0
Relative Difficulty																		

ecocopter The search for a greener tomorrow

Overall Metric

- Need a way to rate different aircraft configurations by the requirements of the RFP
- Used an overall metric, combining four sub-metrics based on the results of the QFD
- Sub-metrics used target values to provide an rating for each section
- Sub-metrics
 - Efficiency Rating (EfR)
 - Mission Rating (MiR)
 - Emission Rating (EmR)
 - Cost Rating (CR)

ecocopter

The search for a greener tomorrow

	Overall Metric
Ecocopter	0.785
MD 500E	0.700
MD 520	0.677
EC 120	0.671
Bell 206L4	0.658
EC 130	0.641
Bell 407	0.609

AHS

Vehicle Sizing and Performance

- Baseline Vehicle Configuration
 - Focused on high efficiency and low emissions
 - Single main rotor helicopter
 - Fenestron anit-torque system
 - Skid landing gear
- Methodology
 - CIRADS (R_f method)
 - Design Matrix

ecocopter

Fuselage I	Main Rotor				
Length	8.7 m		4.42 m		
Height	2.74 m	Blades	4		
Width	2 m	Solidity	0.05		
We	Tip speed		206 m/s		
Gross Weight	Gross Weight 1615 kg Tip Taper			5:3	
Empty Weight	858 kg	Shaft Tilt		0°	
Fuel Weight	158 kg	Disk Loadi	217 N/m ²		
Payload	757 kg	Twist Rates	s	-8° linear	
Recommended C		114 kts			
Max Airspeed		159 kts			
Endurance Airspe		71 kts			
Max ROC		630 m/min			
Range with 20mi		411 Nmi			
Endurance with 2		4.5 hr			

Vehicle Sizing and Performance

Rotor System

- Hingeless Rotor System
 - Use of material flexing to compensate for dissymmetry of life, flapping, and lead/lag

- Starflex (Eurocopter AS series)
- Spheriflex (Eurocopter EC series)

<u>Pros</u>

- Fewer Parts
- Simplicity
- Reduction in hub vibrations

Cons

- Cost (composite material and manufacturing)

ecocopter The search for a greener tomorrow

AHS

Rotor System

- Advanced Technology Rotor (ATR)
 - Hingeless and bearingless system
 - Feathering accomplished by beam twisting
 - Developed by Eurocopter
 - Modified for the Ecocopter's four blade rotor system

AHS

Structural Analysis

- Structural members to support helicopter frame
 - Maneuvering loads
 - Main rotor: +3.5g, -1.0g
 - Tail rotor
 - Crash loads
 - Frame floor impact: 4.5g
- Designed in CATIA
- Analyzed in ABAQUS

ecocopter

Freedom Rotapower 530

Туре	Rotary
Fuels	Multi-fuel Capable
Power	300 HP
Weight	140 lb
Power Density	.47 lb/HP
SFC	.4 lb/HP-hr
Emissions	SULEV

ecocopter

The search for a

greener tomorrow

Engine Configuration

AHS

International

Georgia Institute of Technology

- VRM System
 - Engine computer shuts off fuel injectors and spark plugs to inactive rotors
 - Solenoid detaches inactive rotors from camshaft
- VRM Conditions

Fuel Selection

• Fuel Selected: Ethanol

Compound	Emissions (g/hp-hr)
NOx	0.016
СО	0.03
UHC	0.0043

- 25% lower CO2 emissions compared to Gasoline
- Renewable Resource
- Lower Cost than Gasoline

ecocopter

Fuel Selection

AHS International

• Ethanol Costs Since 2005

ecocopter The search for a greener tomorrow

Control System Hierarchy

AHS International

Advanced Route Planning

 NOAA NCEP Winds Aloft forecasts report wind speed variations of approximately 5-7 knots and ~5° heading variations every 3000ft

GeorgiaInstitute of **Tech**nology

ecocopter

Advanced Route Planning

• Atmospheric based route planning will provide a noticeable improvement to performance

Cruise power required @ 5000ft								
Condition	Power Re	quired	% Power					
			Reduction					
0 knot tailwind	210		0					
5 knot tailwind	199.3		5.0952					
10 knot tailwind	189.8		9.619					

ecocopter

The search for a

greener tomorrow

AHS

Cost Analysis

 Reviewed direct operating costs per flight hour using the Bell Cost Model using very conservative values for fuel costs

Ecocopter			
DIRECT OPERATING COST			
FUEL AND LUBRICANTS			
FUEL (13.7 GAL/FH @ \$2.50/GAL)	\$34.13		
LUBRICANTS @ 3.0% OF FUEL COST	1.02		
TOTAL FUEL AND LUBRICANTS		\$35.15	
AIRFRAME MAINTENANCE			
LINE MAINTENANCE (0.215 MH/FH)	\$10.75		
LIFE-LIMITED PARTS (REMOVE/REPLACE 0.018 MH/FH)	0.92		
LIFE-LIMITED PARTS COST	45.38		
OVERHAUL PARTS (REMOVE/REPLACE 0.001 MH/FH)	0.04		
OVERHAUL PARTS (COST TO OVERHAUL)	6.35		
UNSCHEDULED REMOVE/REPLACE LABOR (0.563 MH/FH)	28.14		
UNSCHEDULED PARTS COST	33.43		
TOTAL AIRFRAME MAINTENANCE		\$125.01	
POWERPLANT OVERHAUL AND MAINTENANCE		\$54.70	
TOTAL DIRECT OPERATING COST			\$214.87

Published operating cost values for competitors were outdated and values based on current fuel prices were calculated

AHS

International

Helicopter	Operating Cost (\$2001)	Operating Cost (\$2008)			
Ecocopter	N/A	\$215			
EC-120	\$220	\$297			
MD500	\$220	\$284			

ecocopter

The search for a

greener tomorrow

Conclusion

Everything you would expect from a "green" helicopter...

- Superior Engine Performance
 - High Efficiency
 - Low Emissions
 - Multi-fuel capable

ecocopter The search for a greener tomorrow

- Improved Safety
 - Fenestron Anti-torque System
 - High Autorotative Index
 - Emergency Autonomous Control
 - ... and more.

AHS