

Georgia Institute of Technology

Georgia Institute of Technology

XV-58 "Manta"

ENABLING TECHNOLOGIES

- Carefree Maneuvering ensuring maximum flight envelope
- Lightweight Composite drive systems
- Advanced blade design for maximum hover efficiency
- State-of-the-art Electrical Actuation Control Systems for increased reliability
- Integrated Health and Usage Monitoring (HUMS) and Condition Based Maintenance (CBM) for reduced dynamic design margins and increased reliability

Fly-By-Wire Full Authority Control System

Game-Changing Performance with Superior Efficiency

CRIME -	
	india a

TECHNICAL SPECIFICATIONS

Performance (at Design GWT)		
Max Speed (95% MRP)	368 KTAS	682 km/h
Cruise Speed	264 KTAS	489 km/h
Range (Maximum) ++	915 nm	1,695 km
Hover Ceiling+	11,350 ft	3460 m
Service Ceiling ⁺	34,250 ft	10,440 m
Powerplant		
2 x GE CT7-8 (2500 SHP)		
Capacity		
Crew	2 pilots, 1 flight engineer	
Payload (maximum)	1741 lbs	790 kg
Fuel (maximum)	3980 lbs	1805 kg
Cargo/Passenger Volume	183.5 ft ²	17.0 m ²
Max Takeoff Weight	12207 lbs	5537 kg

+Design GWT, ISA, MRP Limit ++100lb Payload

SUPERIOR PERFORMANCE FOR ALL MISSIONS

VTOL Aircraft 15 min Turboprop 40 min Jet 60 min

- Large, flexible useful load capability (4700 lbs)
- Large available cabin/cargo space and fuel volume provide mission versitility
- VTOL ability, combined with high speed performance provide unmatched performance for any mission
- Hover OGE at 11,500 ft (ISA, max gross weight).
- Cruise above the clouds at 30,000+ ft.

POTENTIAL FOR RADICAL NEW MISSIONS

- **VIP/Corporate:** Combines the convenient VTOL capability of a helicopter with the ability to cruise past most turboprops, providing the ideal means to get the people you need, where you need them, fast.
- Search and Rescue: Get to those in need quickly, and hover high, hot, and heavy for difficult extractions. Respond the quickest when it means the most.
- Military: Whether it's moving personnel anywhere, quickly, surveilling the enemy from beyond their reach, or bring firepower where it's needed, the XV-58 has the potential to provide game-changing military capabilities.
- Emergency Medical Service: Move patients between hospitals and cities quicker than any existing helicopter, without sacrificing the space or cabin quality needed to care for them on-route.

Georgia Institute of Technology

Airspeed for Full Transition to Forward Flight

OPTIMAL DESIGN

- Over 5000 individual conceptual designs explored.
- Multi-objective optimization of vehicle for ideal range of capabilities
- 10,471 feasible combinations of 20 different possible technologies explored for optimum combination for the concept.

AERODYNAMIC OPTIMIZATION WITH 3D PANEL CODE

- Combined sources and doublets, using Dirichlet BC for improved efficiency with Prandtl-Glauert compressibility correction for high speed flows and LU-decomposition for fast matrix inversion.
- The 3D panel code specifically developed for the project was combined with a custom BWB shape-generator and optimized to maximize aerodynamic efficiency.

ADVANCED CFD ANALYSIS

- The aerodynamic performance of the concept was validated using advanced CFD techniques
- Grid generated using Pointwise
- Simulation run with FLUENT on Georgia Tech's supercomputer PACE (using 36 cores).

Fly-by-Wire AFCS

SMOOTH TRANSITIONS

- The XV-58 AFCS is designed to reduce changes to trimmed pilot inputs during transition between hover and cruise.
- Ability to provide full control authority to effectors throughout all flight regimes, while providing control mixing and inherent stability.
- Reduced chance of coupling and PIO

1

0

-1

-2

-3

-4

-5 7.5

10

5

0

-5

-10 ∟ 7.5

Predicted ability to obtain Level 1 Handling Qualities in hover and forward flight.

Airspeed

0

50 100

150

200 250

300 350

400

(kts)

ROBUST **CONTROL SYSTEM**

- The XV-58 is robust against movement of the longitudinal CG, providing in-flight payload flexibility.
- Tolerance of up to +/-1 feet offset envelope in both lowspeed and highspeed configurations.
- Allows for expansion of payload types and mission flexibility.

Georgia Institute of Technology

Scalability

As a demonstrator aircraft, the XV-58 Manta is meant to illustrate the nextgeneration performance and operational efficiency available from this radical new concept. Scalability is a critical feature of the concept. Scaling down isn't easy, but at larger gross weights, the XV-58 provides superior performance.

SCALING DOWN

Performance (at 5000 lbs)		
Max Speed (95% MRP)	304 KTAS	
Cruise Speed	283 KTAS	
Range (Maximum) **	512 nm	
Powerplant		
1 x GE CT7-8 (2500 SHP)		
Capacity		
Useful Load (maximum)	1378 lbs	
Payload (maximum)	640 lbs	
Crew/Passengers*	2/1	
Max Takeoff Weight	5143 lbs	

⁺Design GWT ^{**}100lb Additional Payload

SCALING UP

Performance (at 24,000 lbs)		
Max Speed (95% MRP)	351 KTAS	
Cruise Speed	245 KTAS	
Range (Maximum) **	1322 nm	
Powerplant		
2 x Rolls Royce AE 2100 (4480 SHP)		
Capacity	_	
Useful Load (maximum)	4725 lbs	
Fuel (maximum)	8000 lbs	
Max Takeoff Weight	24430 lbs	
Crew/Passengers*	3/19	
Cargo/Passenger Volume	1521 ft	

+Design GWT **1850lb Payload

NURTURING RADICAL IMPROVEMENTS IN VTOL FLIGHT

RADICAL NEW CAPABILITIES
THROUGH UNPRECEDENTED
PERFORMANCE

