

Executive Briefing

30th Annual AHS Student Design Competition

Graduate Category

Alexander Forbes Charles Gayagoy Michael Roberts Thomas Maschmeyer Vatsal Vakharia Ben Wagner Nathon Woelke Dr. Daniel Schrage (Faculty Advisor)

Maximum Vertical Climb Service Ceiling

26.6 m/s (5262 ft/min)

20.6 m/s (4083 ft/min) 7010m (23,000 ft)

	15000 kg	33070 lb
ht	8054 kg	17,757 lb
apacity	5470 L	1445 gal
LDO CA	4391 kg	9681 lb
	6850 kg	15100 lb
t /	1.78 m	5.8 ft
1	3.96 m	13 ft
	1.98 m	6.5 ft
g	3 (4 Max)	

STERNA

6000m/ISA+15 246 kts 3684 km (1989 nm) 150 kts 13.2 hrs 5.6 m/s (1125 ft/min)

Anatomy of the Sterna

Arrangement of fuel tanks in the wing

Suggested Layout for Medevac Missions

Conveniently fit 6 litters with a crew member in the cabin

Retractable landing gear for a cleaner, low-drag configuration

Resulting in a flat plate drag area of 19.73 ft²

(Please refer the section on Drag in this document)

The constant speed propeller aids in the high speed performance.

Excess fuel tank capacity helps exceed the range requirement.

Empennage with NOTAR and propeller

Apart from low noise emissions, NOTAR enables a high fuselage contraction angle thereby reducing drag.

Creating the Sterna: Design Process

7 M&P Tools

Modified GIT Rotorcraft IPPD Preliminary Design Methodology

I The Georgia Tech Rotorcraft IPPD preliminary design methodology is tailored to suit the current design task.

II The 7 Management and Planning tools (M&P) are used as inputs to obtain a Quality Function deployment matrix, which is used as a means to understand customer needs and establish a base for tradeoffs.

III Morphological and Pugh matrices are used to generate alternative configurations. Three are selected.

IV The RF method is used for sizing the three alternatives. Model center is used to optimize the three alternative configurations, using a Darwin algorithm optimization routine. The configuration data is then used to rank the alternatives, using TOPSIS. The Single main rotor configuration is found to be the best.

0	c	11
Component	ft	lbs
Vertical center of gravity	4.667	30865
Tail distance (vertical)	7.000	518
Fuselage cg	4.856	15233
Wing cg	7.000	2005
other	4.000	750
Fuel cg	4.000	9729
Payload cg	4.000	2630
Engine cg	6.000	1305
engine cooling etc. cg	6.000	716
nacelle cg	7.000	455
landing gear cg	1.000	1044
fuselage Structure cg	3.500	2432
drive system	7.000	3476
rotor	10.000	2050
control system	2.000	374
avionics	2.000	377
equipment $+ a/c + anti-icing$	2.000	671
electrical	2.000	983
aux power	6.000	147
instruments	3.000	94
fuel system	3.000	576
furnishing	0	533

STERNA

Vertical CG buildup

0		
Component	ft	lbs
Longitudinal Center of Gravity	15.074	30865
Tail distance (horizontal)	42.800	518
Fuselage cg	14.693	15233
Wing cg	17.000	2005
other	5.	750
Fuel cg	15.000	9729
Payload cg	13.500	2630
Engine cg	16.750	1305
engine cooling etc. cg	16.750	716
nacelle cg	16.750	455
landing gear cg	7.	1044
fuselage Structure cg	17.600	2432
drive system	17.000	3476
rotor	15.375	2050
control system	11.663	374
avionics	6.	377
equipment $+ a/c + anti-icing$	7.	671
electrical	15.375	983
aux power	17.000	147
instruments	3.	94
fuel system	15.000	576
furnishing	8.	533

Longitudinal CG buildup

	Baseline	Sterna
Max Gross Weight, kg (lbs)	15558 (34300)	15000 (33070)
Weight Empty, kg (lbs)	8333 (18371)	8054 (17757)
Useful Load, kg (lbs)	7225 (15928)	6946 (15132)
WE / GWT	0.54	0.54
Useful Load / GWT	0.46	0.46

6000 m ISA + 15 C	
Temperature (deg. C)	-9
Density (slug/ft^3 or kg/m^3))	0.0012076 or 0.6223
Viscosity (slug/ft-s or Kg/m-s))	3.49E-07 or 1.67E-05
Cruise Speed (ktas)	240

Component	Fron	t Area	rea Wetted Area		Cha	uracteristic Length	Re	Cd (frontal)	Cf	dfe	
Printing in	ft^2	m^2	ft^2	m^2	ft^2	m^2	14000			ft^2	m^2
Fuselage	51.3	4.763	796	74	47.8	4.443407	6.70E+07	0.1	0	6.96	0.65
Wing			636	59.1	5.78	0.536962	8.11E+06		0	2.54	0.24
Hor. Stabilizer			51.6	4.79	3.16	0.293564	4.44E+06	021-20	0	0.21	0.02
Vertical Tail			51.2	4.75	4.33	0.402257	6.07E+06		0	0.2	0.02
Engine Inlets				>		W				1.5	0.14
Rotor hub	9.19	0.854	67.1	6.23	6	0.5574	8.41E+06	0.6		5.51	0.51
NOTAR Nozzle	2.14	0.199	D /		1.33	0.123557	1.87E+06	0.75		1.6	0.15
Protuberances				· Q			6			1.2	0.11
		1			1000	1.1	1		Total	19.7	1.83

Drag Breakdown

Rotor System

	2			
Туре	Hinge	eless		
Radius	9.14 m	30 ft		
Chord	0.747 m	2.45 ft		
Number of Blades	5			
Solidity	0.1	13		
Hover Disk Loading	57 kg/m ²	11.7 lb/ft ²		
Tip Twist (linear)	-16°			
Tip Speed - Low speed flight	221 m/s	725 ft/s		
Tip Speed -High speed flight	144 m/s	471 ft/s		
Tip Mach - High speed cruise	0.82			
Gear reduction	0.6	55		
Shaft speed - Low speed	231 rpm			
Shaft speed - High speed	150 rpm			
Mast tilt (forward)	3°			
Rotor airfoils	VR12 (roo	t - 85%R)		
1-	VR15 (85%R - tip)			

G

Dynamic Rotor Analysis:

No problems at High RPM (226)

^{Chord 2} At reduced RPM (150) 2 modes are close, but distant enough to not cause serious problems

STERNA

Optimized Propulsion System

Optimization: GasTurb and Excel code were used for Parametric Analysis and optimization

STERNA

Technology infusions:

Active Tip Clearance Control: Improved compressor efficiency

Advanced Compressor manufacturing and design: Each stage manufactured as a single bladed disk or "blisk". Result is a low parts count.

Vacuum cast Single crystal nickel alloy turbine buckets: Enables higher turbine inlet temperatures

Twin Annular Combustor: Steadier flame, lesser hot spots

<u>The Result:</u> An improvement in Specific fuel consumption of 32% over a sized Rolls Royce CT7-8 engine.

Blisk

Doculta	1 st It	eration	2 nd Iteration		
nesuits	Baseline	Improved	Baseline	Improved	
Power Required (HP)	3000	3000	3657	3657	
SFC (lbm/(HP*hr))	0.47	0.354	0.544	0.369	
W2A (lbm/s)	25.25	15.21	31.77	21.43	

Loading scenario - Hover

ANSYS Model - Mesh Quality

Loading scenario - Forward flight

STERNA

A finite element analysis (FEA) was performed on the wing to determine the structural integrity of the airframe and skin.

The resulting stresses and deflections helped determine that wing structure is adequately designed to withstand the various loads while minimizing tip deflection and meeting wing-to-rotor clearances.

ANSYS Model - Wing Airframe and Skin Surfaces.

FEA Results - Forward Flight - Equivalent Stress (Von- Mises).

FEA Results - Hover - Total Deformation

FEA Results - Hover - Equivalent Stress (Von-Mises).

Trim

The charts provided herein are generated in Helidyne and reflect the results of hover and low speed trim values for the Sterna at maximum gross weight.

STERN

The values do not reflect push propeller engagement, rudder, or aileron use.

Below 15kts the Sterna is modeled as a traditional helicopter (although this would not preclude the engagement of the push prop for pitch adjustment.)

complete

Dynamic Limit Margin

Bell STAR inspired control system for the Sterna

- 13

Payload

Mission 1

Mission Payload	Surveillance, Command and Control	Aid Distribution	SAR, Medical Evacuation	€ 4000
Design Requirement	Configurable surveillance payload. Communications architecture supporting over the horizon data transmission.	2 metric ton payload of aid deliverable by parachute. Load/unload maximum time allowed of one hour for two metric tons of material.	Transport 3 crewmembers and 6 wounded on litters. Load/unload maximum time allowed of 30 minutes for 6 litter patients.	POR 3000 4 2000 12000 13000 150
Sterna Enablers	Dual side loading (payload can be developed to orient out either door and used while in orbit over objective.) Wing above cargo doors preventing interference during loading and unloading of personnel or payload. Over the horizon communications standard in baseline avionics configuration. Payload "piggybacks" off existing data bus.	Dual side loading Wing above cargo doors preventing interference during loading and unloading of or payload.	Dual side loading. Wings above cargo doors preventing interference during loading and unloading of or payload while facilitating quick hoist operations. Medical equipment attached to litter carrier can access vehicle electrical bus.	Total Range (km) Mission 2 4000 4000 15000 kg 1000 12000 kg 13000 kg 12000 kg 12000 kg 12000 kg 12000 kg 12000 kg 1000
Required Third Party Specifications for Payload Development.	Must be detachable and releasable in flight during emergency situations where weight reduction is critical to continued survival of the occupants	Must be immediately releasable in flight during emergency situations where weight reduction is critical to continued survival of the occupants	Litter carrier must be capable of enduring a minimum of 10 G vertical impact without compromising living space between litters. This allows for the deployment of the emergency parachute recovery system without risk to recovered personnel.	Mission 3 5000 4000 5000 5000 5000 5000 5000 500

Payload Considerations and Payload range diagrams for the three missions

The Sterna is designed to incorporate a modular payload system in order to meet the surveillance, cargo, and medical evacuation requirements without the need to modify the vehicle.

The vehicle is designed with a rapid installation and removal interface with incorporated climate control, pressurization, and ample electrical power available to operate the necessary surveillance, para-drop, and medical equipment that may be employed.

	UH60L	Sterna	
Bell PC Cost	\$12,296,427.00	\$15,743,724.00	
Harris and Scully	\$12,642,977.45	\$38,034,622.81	
			_

Economics

Unit cost was estimated using two different cost models.

The Sterna meets the Direct Operating Cost requirement and exceeds the Direct Maintenance Cost requirement.

Maintenance Man Hours per Flight Hour is lesser than that of the UH-60.

Average hourly fuel consumption of the Sterna was set to the industry standard, giving a slight edge to the UH-60.

Availability is a critical element for a rescue and disaster relief vehicle. For the Sterna, it is 0.7315 as compared to the UH-60's 0.6764.

Development Timeline and Future

The following technologies may be incorporated in the future:

STERNA

- Transparent Composites
- Smart Materials Activated Rotor Technology
- Hybrid Engine Technologies
- Electric Motor Technologies
- NOTAR to Auxiliary Propulsion Conversion in Forward Flight

<u>Conclusion</u>: Full electric concepts would be feasible only with breakthroughs in specific energy and power density of electrical devices. Initially, they may be incorporated for smaller aircraft, with low performance requirements. Once proven, they may be found fit for demanding applications like the current one.

Selecting the number of parachutes

	Canopy Data
Decent Vel (MSL)	7.62 m/s (25 ft/sec)
Drag Coef	.9
Number of Chutes	3
Adj. Drag Coef	.81
Dc/Do	.97
Constructed Diameter	22.86 m (75 ft)

Design data

G load study

STERNA

Concept demonstration in X-plane

The Sterna's operational environment places the vehicle in rugged terrain or areas subject to extensive debris fields associated with large scale manmade or natural disasters. This severely restricts the vehicles ability to maneuver under reduced power or auto-rotate to a suitable landing area in case of emergency.

Therefore, an Emergency Parachute Recovery System (EPRS) that would allow the passengers to egress the aircraft in distress is proposed.

The EPRS draws inspiration from the F-111 "Aardvark" cockpit capsule egress system and the Ballistic Recovery Systems (BRS) complete plane ballistic parachute system now in service on general aviation aircraft, in particular the Cirrus and Cessna models.

Туре	Constructed Shape Dc/Do	Inflated Shape (Dp/Do)	Cd0	Average angle of oscillation	General Application
Ringslot/Solid D Canopy	0.97	0.65 to 0.68	0.85 to 0.95	±18° to ±22°	Deceleration /Descent
	Selected	parachute con	ofiguration		NAME AND ADDRESS.

Saviour In the Sky

No matter when or where mother nature expresses her fury, the Sterna will always be available at the service of mankind.

Great performance achieved through incorporation of technologies: Low fuel consumption, better handling and controllability, low drag, high cruise speed and service ceiling. All this at an affordable price so that we may save something priceless:

life.